

Сравнительный отчет о применении

каустического магнезита (ПМК) и молотого брусита в технологии производства аммиачной селитры в качестве магнезиальной добавки против слеживаемости ОАО «РовноАзот» (г. Ровно, Украина) в 2007-2008 гг.

Неритмичная поставка сырья (магнезита) применяемого при производстве магнезитной добавки в аммиачную селитру, трудности, возникающие в процессе приготовления чистого раствора $Mg(NO_3)_2$ для получения неокрашенной аммиачной селитры, дополнительные затраты тепловой энергии и снижение производительности оборудования из-за интенсивного отложения сульфатов на стенках труб выпарного аппарата привели к тому, что на OAO «Ровноазот» в 2007 году начали изучение и промышленное испытание предложенного OOO «Русское горнохимическое общество» порошкообразного гидроксида магния, поставляемого под торговой маркой «Агромаг», который получают в результате сушки и измельчения минерала БРУСИТ из Кульдурского месторождения.

Брусит — природный материал, состоящий в основном из гидроксида магния $Mg(OH)_2$ и небольшого количества примесей оксидов кремния, серы, железа (см. Таблицу 1).

Таблица 1.

Наименование показателя	Характеристика и норма			
Внешний вид	Порошкообразная масса			
Химический состав:	Белый			
- содержание Mg(OH) ₂ , %	Среднее 90,0% минимум 88%			
- содержание MgO, %	Среднее 61,5% минимум 60%			
- содержание СаО, %	Среднее 2,5% максимум 4,0%			
- содержание SiO ₂ , %	Среднее 3,0% максимум 4,0%			
- содержание SO ₃ , %	Среднее 0,01% максимум 0,1%			
- содержание Fe ₂ O ₃ , %	Среднее 0,15% максимум 0,5%			
Фракционный состав				
- проход через сито 0,315 мм	90%			
pH	9,0 – 10,0			
Пожаро- и взрывоопасность	Пожаровзрывобезопасен			
Токсичность	Не токсичен			
Радиоактивность (мкр/час)	3,0 - 6,0			

Для определения оптимальных технологических параметров ведения процесса приготовления магнезиальной добавки было выполнено ряд лабораторных и промышленных испытаний, результаты которых приведены ниже.

ОПЫТ 1 (лабораторный).

Процесс разложения брусита проводился раствором азотной кислоты концентрацией 35, 40, 45, 57%.

$$Mg(OH)_2 + 2HNO_3 = Mg(NO_3)_2 + 2H_2O$$

РЕЗУЛЬАТЫ ИСПЫТАНИЙ

- 1. Брусит дозировался в раствор азотной кислоты при постоянном перемешивании до pH 6.0-6.5. В таких условиях температура смеси поднимается до 85-110 °C. Самая высокая температура при дозировании брусита в кислоту концентрации 57%.
- 2. При дозировании брусита на поверхности раствора образуется пена объемом 2 5 % от объема раствора. Высота пены увеличивается при увеличении скорости подачи брусита.
- 3. Полученный раствор нитрата магния при использовании кислоты концентрацией 45-57 % кристаллизуется при температуре 29 и 40° C соответственно. Массовая доля $Mg(NO_3)_2$ в растворе:

44% или 12% MgO при HNO₃ 45% 49,5% или 13,3% MgO при HNO₃ 57%

- 4. Цвет раствора при рН 1 5,5 свело-серый, при переходе до рН 6 цвет раствора меняется на желтый. Отстоявшийся раствор остается светло-желтым.
- 5. В дальнейшем опыты проводились с кислотой 35-40%. Результаты испытаний приведены в Таблице 2.

Таблица 2. Сравнение показателей при получении нитрата магния из брусита и магнезита.

показатели	Брусит Mg(OH) ₂ MgO = 59%	Магнезит MgO = 83-85%	
1. Химический состав сырья	<u> </u>		
массовая доля магния в пересчете на MgO, %	59	83 – 85	
массовая доля кальция в пересчете на СаО, %	2,3	1,24	
массовая доля железа в пересчете на Fe ₂ O ₃ , %	0,1	1,43	
массовая доля кремния в пересчете на SiO ₂ , %	2,3 0,1 2,2	1,92	
массовая доля хлоридов Cl, %	0,1	0,127	
2. Химический состав раствора нитрата магни	ия неосветленного (C =	= 35 – 40% HNO ₃)	
Содержание MgO общ., %	11,3 – 11,5	11,5 – 12,5	
Содержание MgO водораствор., %	9,9 – 10,2	11,0-12,0	
Содержание железа в пересчете на Fe ₂ O ₃ , %	0,021 - 0,023	0,46 - 0,60	
рН	6,0-6,2	6,0-6,2	
3. Химический состав осветленного раствора н	итрата магния		
Содержание MgO общ., %	9,7-10,2	10,5-11,8	
Содержание железа в пересчете на Fe ₂ O ₃ , %			
Через 3 часа	0,001 - 0,004	0,002 - 0,003	
Через сутки	0,0003 - 0,0015	0,0005 - 0,0025	
Фильтрованный	0,0005 - 0,0006	0,0003 - 0,0006	
pН	6,0 – 6,5	6,0 – 6,5	
4. Объем шлама в осветленном растворе			
35% HNO ₃	17.5	32,5	
40% HNO ₃	17,5 7,7	-	
	,		
5. Химический состав шлама	•	•	
Содержание МgО общ., %	33,7 – 41,8	16 – 20	
Содержание MgO водораствор., %	4,6 - 5,9 0,31 - 0,46	7,9-8,9 0,9-4,0	
Содержание железа в пересчете на Fe ₂ O ₃ , %	0,31-0,46	0.9 - 4.0	

Осветленный раствор нитрата магния с содержанием MgO 10,2% и Fe_2O_3 0,004% введен в образец аммиачной селитры. Получен результат:

АС, исходный образец АС с добавкой $Mg(NO_3)_2$ из брусита MgO, % 0,3 0,56 Fe_2O_3 , % 0,0007 0,0012

Оба образца аммиачной селитры белого цвета.

Неосветленный раствор нитрата магния с содержанием MgO 10,2% и Fe_2O_3 0,023% введен в образец аммиачной селитры. Получен результат:

	АС, исходный образец	АС с добавкой $Mg(NO_3)_2$ из брусита
MgO, %	0,3	0,62
Fe_2O_3 , %	0,0007	0,0012
Цвет	белый	слабый оттенок желтого

ОПЫТ 2 (лабораторный).

Для разложения брусита использовалась азотная кислота 40% концентрации.

Результаты испытаний.

- 1. Брусит дозировали в раствор азотной кислоты при тщательном перемешивании со скоростью, обеспечивающей температуру реакционной массы около 85° C до остаточной кислотности 50 ± 2 г/дм³ HNO₃.
- 2. Полученный раствор нитрата магния кристаллизуется при температуре плюс 10-12 °C. Массовая доля $Mg(NO_3)_2$ в растворе составляет 37% или 10% MgO. Массовая доля железа в пересчете на Fe_2O_3 составляет 0,023%.
- 3. При работе в таком режиме масса осадка после осветления раствора методом отстаивания составила 3 5% от массы брусита, использованного в опыте. Химический состав осадка, %:

 $egin{array}{lll} MgO \ {
m водорастворимый} & 7,3 \\ SiO_2 & 60,0 \\ Al_2O_3 & 1,4 \\ Fe_2O_3 & 0,8 \\ \end{array}$

4. Отстоявшийся раствор нитрата магния с содержанием MgO 10,2% и Fe_2O_3 0,023% добавили в раствор аммиачной селитры. Получен результат:

	АС исходная	АС с добавкой из брусита
MgO, %	0,25	0,56
Fe_2O_3 , %	0,0002	0,0013
Цвет	белый	слабый оттенок желтого

5. Проведено донейтрализацию раствора нитрата магния с остаточной кислотностью $50 \pm 2~\mathrm{г/дм^3}~\mathrm{HNO_3}$ газообразным аммиаком до остаточного содержания аммиака $1,72~\mathrm{г/дm^3}$. Полученный раствор кристаллизуется при температуре минус $8-10~\mathrm{^\circ C}$, что дает возможность хранить и транспортировать его без обогрева емкостей и трубопроводов. Массовая доля $\mathrm{Mg(NO_3)_2}$ в растворе составляет 37% или в пересчете на $\mathrm{MgO}~10\%$.

По результатам лабораторных опытов для промышленных испытаний была выбрана схема:

- 1. Брусит из мягких контейнеров типа «биг-бэг» выгружается в приемный бункер установки приготовления магнезиальной добавки. Вместимость бункера 25 тонн. Из бункера системой пневмотранспорта брусит подается в два параллельно работающие реактора объемом 10 м³ каждый.
- 2. Предварительно в реакторах готовится раствор азотной кислоты концентрацией $40 \pm 1 \%$ HNO₃.
- 3. Дозировка брусита ведется со скоростью, обеспечивающей поддержание температуры в реакторе в пределах 75-85 °C.
- 4. Дозировку брусита прекращают при достижении значения остаточной кислотности в реакционной массе в пределах 15 25 г/дм.
- 5. После прекращения дозировки раствор интенсивно перемешивается на протяжении 60 90 минут для обеспечения полного разложения брусита.
- 6. Готовый раствор сливается в отстойники, отстаивается в течение 6 12 часов, осветленный раствор используется в производстве, шлам выводится в шламонакопитель

РЕЗУЛЬТАТЫ ПРОМЫШЛЕННЫХ ИСПЫТАНИЙ

Таблица 3. Сравнение показателей при получении раствора нитрата магния из брусита и магнезита.

ПОКАЗАТЕЛИ	Брусит Mg(OH) ₂ MgO = 59%	Магнезит MgO = 83-85%		
массовая доля магния в пересчете на MgO, %	10,3-11,1	10,5-11,0		
массовая доля железа в пересчете на Fe ₂ O ₃ , %	0.02 - 0.00076	0,0011 - 0,0018		
pH	6,2	6,2		
Объем шлама, %	3 – 4	28 - 34		
Химический состав шлама, %				
MgO	2,12	16,6		
Fe ₂ O ₃	0,25	4,0		
SiO_2	64,6	7,0		
H_2O	16,0	35 – 40		

Таблица 4. Сравнение показателей аммиачной селитры с добавкой из брусита и магнезита.

ПОКАЗАТЕЛИ	Добавка Mg(NC	Добавка Mg(NO ₃) ₂ из магнезита	
Массовая доля магния в пересчете на MgO, %	0,25	0,31 – 0,36	0,31
Массовая доля H ₂ O	0,18-0,27	0,16-0,23	0,16-0,22
Массовая доля примесей, %			
Fe ₂ O ₃	0,00070	0,00093	0,00062
CaO	0,0064	0,0130	0,0109
SiO_2	0,0011	0,0019	0,00097
Сl, мг/кг	22,2	35 - 37	42,8 - 46,4
Статическая прочность гранул, Н/гран.	9,5 – 9,8	10,3 - 10,8	10,8 – 12,6
Термоциклические изменения (25 – 50°C после 30 циклов, прочность, Н/гран.)	7,1	8,9	8,5

В ноябре 2007 года на наше предприятие была прекращена поставка магнезита в связи с проведением ремонта на заводе поставщика и мы были вынуждены срочно осваивать технологию производства магнезиальной добавки из брусита. Переход прошел достаточно легко – серьезных реконструкций кроме изменения трассировки трубопроводов пневмотранспорта с целью уменьшения гидравлического сопротивления и установки вибратора на бункер в связи со склонностью бруситовой муки образовывать своды, в технологической схеме делать не пришлось, сам процесс идет намного легче и ровнее, повысилась производительность труда так как сократилось время отстаивания и уменьшилось количество отходов производства.

Основные нормы технологического режима:

1. Концентрация азотной кислоты в реакторе - $40 \pm 2 \%$

2. Скорость подачи брусита в реактор - 250 кг/час

3. Температура раствора $Mg(NO_3)_2$ - 75 – 85 °С

Результаты работы установки в 2007 году на магнезите и в 2008 году на брусите сведены в таблицу:

Таблица 5. Результаты работы установки на магнезите и брусите.

2007 год МАГНЕЗИТ

	Выработка	Содержание	Расход	Расход	Содержание	Расход	Коэффициент
Месяц	Быраоотка АС, тонн	MgO в AC,	MgO c AC,	магнезита	MgO в	MgO 100%,	использования
	АС, ТОНН	%	тонн	(натура), тонн	магнезите, %	тонн	MgO, %
1	49 220	0,24	118,13	200,7	83,4	167,38	70,6
2	44 092	0,24	105,82	210,0	84,2	176,82	59,84
3	47 064	0,25	117,66	151,0	86,9	131,22	86,9
4	44 789	0,27	120,93	170,7	87,1	148,51	81,43
5	45 464	0,26	118,21	162,45	86,2	140,03	86,2
6	41 568	0,26	108,08	165,7	84,1	139,35	77,56
7	37 639	0,28	105,39	195,4	85,9	167,85	62,79
8	45 232	0,26	117,60	144,7	85,2	123,28	95,39
9	46 258	0,26	120,27	154,7	85,7	132,58	90,7
10	49 346	0,23	113,50	213,5	86,8	185,32	61,25
За 10 мес.	408 257	0,25	1020,64	1768,85	85,7	1515,9	85,7

БРУСИТ

	Выработка	Содержание		Расход брусита	Содержание	Расход	Коэффициент
Месяц	дыраоотка АС, тонн	MgO в AC,	MgO c AC,	(натура), тонн	MgO в	MgO 100%,	использования
	АС, 10нн	%	тонн	(натура), тонн	брусите, %	тонн	MgO, %
11 '07	46 180	0,26	120,07	248,6	60,0	149,16	80,5
12 '07	49 298	0,26	123,25	227	60,0	136,2	90,5
01 '08	50 167	0,23	115,38	179	62,1	111,16	103,4 ¹
2	46 850	0,25	117,13	208	61,4	127,7	91,7
3	50 096	0,26	130,25	219	60,6	132,7	98,2
4	47 710	0,24	114,5	198	62,1	122,9	93,2
5	44 148	0,24	105,95	155	60,3	93,47	113,41
6	16 086	0,24	38,6	53,6	62,0	33,23	116,21
7	32 211	0,25	80,52	129	62,3	80,37	$100,2^{1}$
8	46 009	0,24	110,4	187	61,8	115,57	95,5
9	35 571	0,25	88,93	142	62,3	88,47	100,51
10	39 261	0,24	94,23	185	61,6	113,96	82,7
11	43 268	0,23	99,51	167	61,2	102,2	97,4
За 13 мес.	546 855	0,25	1367,1	2298,2	61,4	1411,1	96,9

 $^{^{1}}$ – коэффициент использования MgO выше 100% в связи с большим объемом склада раствора Mg(NO₃)₂ (325 тонн)

Как видно из приведенных данных, **MgO из брусита используется в 1,13 раза** эффективнее, чем из магнезита, что частично компенсирует разницу в содержании его в исходном сырье.

Относительно низкое содержание MgO в готовом продукте на нашем предприятии по нескольким причинам:

- 1. Низкая концентрация азотной кислоты, используемой в производстве аммиачной селитры (в среднем 57,2%), что приводит к снижению концентрации раствора АС после аппаратов ИТН. Подача раствора Mg(NO₃)₂ еще больше ее снижает.
- 2. Прочность гранул аммиачной селитры во многом зависит от величины кристаллов, образующих гранулу. Добавка нитрата магния в количестве 0,6% (что соответствует 0,16% MgO) уменьшает размер кристаллов нитрата аммония до 54 нм. При концентрации Mg(NO₃)₂ 0,8-3,0% его значение постоянно и равно 36 нм. Повышение содержания Mg(NO₃)₂ до 10% приводит к незначительному уменьшению размера кристаллов NH₄NO₃.
 - «Производство аммиачной селитры в агрегатах большой единичной мощности» Иванов, Олевский, Поляков и др. М. Химия, 1990
 - Содержание MgO в аммиачной селитре равное 0.25 0.26 % соответствует 0.925 0.962% Mg(NO₃)₂, что согласуется с рекомендациями, изложенными выше.
- 3. ГОСТ 2 85 «Селитра аммиачная» определяет содержание добавок: нитратов кальция и магния в пересчете на CaO 0,2 0,5%, что отвечает содержанию этих добавок в пересчете на MgO в количестве 0,15 0,35%.

Результаты работы на протяжении **тринадцати месяцев** с новым видом сырья для производства магнезиальной добавки показали, что брусит может быть полноценным заменителем используемого ранее магнезита и имеет ряд преимуществ перед ними:

- 1. Реакция разложения брусита азотной кислотой ведется в «кислом» режиме, что позволяет использовать MgO из сырья в практически полном объеме и при этом получить белую аммиачную селитру.
- 2. Количество отходов производства уменьшается в 5 7 раз, что имеет значительный природоохранный эффект и дает возможность избежать непроизводительных потерь азотной кислоты, уменьшить затраты на транспортировку и хранение шлама.
- 3. Уменьшается интенсивность отложений на стенках труб выпарного аппарата, что ведет к повышению производительности установки и увеличению коэффициента использования тепловой энергии.
- 4. Шлам легко и в полном объеме отделяется от растворов нитрата магния способом отстаивания, что позволяет отказаться от сложных систем фильтрования и уменьшить объемы отстойников.

В тоже время работа с бруситом требует некоторых изменений в технологической схеме:

- 1. В связи с тем, что порошок из брусита имеет несколько другие физические свойства, чем порошок из магнезита повышенная склонность к сводообразованию, хуже «текучесть», при переходе на технологию производства магнезиальной добавки из брусита необходимо предусмотреть мероприятия, обеспечивающие возможность разрушения образовавшегося свода в бункере (установка вибратора, системы аэрации и т.п.) и по возможности сократить до минимума сопротивление трубопроводов системы пневмотранспорта.
- 2. Так как режим ведется в кислом режиме необходимо ужесточить требования техники безопасности при обслуживании оборудования и трубопроводов и проверить соответствие материалов, из которых они изготовлены, новым условиям производства.

Начальник бюро производственно-технического отдела Мальцев Анатолий Юрьевич